明新科技大學 98 學年度研究所招生考試 試題卷

系所名稱	類別	科目	節次	准考證號碼 (考生請填入)	考試日期
電機工程研究所 (資工組)	碩士班	作業系統	第二節		98/5/3

※答案須寫在答案卷內,否則不予計分。

- 1. Draw a figure to show all of the process's states while executing. (10%)
- 2. Assume that the two processes, P_0 and P_1 , share the following variables: var flag:array[0..1] of boolean; (* initially false *)

turn: 0..1;

The following program is for process P_i (i=0 or 1), with P_j (j=1 or 0) being the other process.

repeat

do if turn = j then begin

$$flag[i] := false;$$

While turn = j do no-op;

end;

critical section

turn := j;

flag[i] := false;

remainder section

until false;

- (a) What are the three requirements that must be satisfied to solve the critical-section problem? (10%)
- (b) Does the following algorithm satisfy all the requirements for the critical-section problem? Why? Please give your reasons. (10%)
- 3. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

<u>Process</u>	Burst Time			
P_I	10			
P_2	29			
P_3	3			
P_{4}	7			
P_5	12			

明新科技大學 98 學年度研究所招生考試 試題卷

系所名稱	類別	科目	節次	准考證號碼 (考生請填入)	考試日期
電機工程研究所 (資工組)	碩士班	作業系統	第二節		98/5/3

※答案須寫在答案卷內,否則不予計分。

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.

- (a) Draw four Gantt charts illustrating the execution of these processes using SJF and RR (quantum=10) scheduling. (10%)
- (b) What is the turnaround time of each process for each of the scheduling algorithms in question (a)? (5%)
- (c) What is the waiting time of each process for each of the scheduling algorithms in question (a)? (5%)
- 4. Consider the snapshots of an operating system with five processes P₀ through P₄ and three resources A, B, and C. Please answer the following questions using Banker's algorithm. (a) What is the content of the matrix *Need*? (b) Is the system in a safe state? If yes, please find a safe sequence; if no, please explain it. (20%)

	Allocation			Max			Available		
	A	В	С	A	В	С	A	В	С
P_0	0	2	0	7	6	3	3	3	3
P_1	3	0	0	4	2	2			
P ₂	3	0	2	9	0	2			
P ₃	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

- 5. Page replacements are used to find the least page fault times. How many page fault times will be generated under the following page replacement strategies with 3 frames and the reference string- 0,1,2,3,0,1,4,0,1,2,3,4? (a)FIFO (b)LRU (c) When the memory has 4 frames, would the FIFO occur Belady's anomaly? (15%)
- 6. Please describe the internal fragmentation. When would it occur? (15%)