明新科技大學九十四學年度研究所碩士班 □在職生 考試入學試題卷

所別	科目	准考證號碼 (請考生填入)	考試日期	節次	4
化學工程研究所	輸送現象與單元操作		94年5月1日	第一節	第一頁/共二頁

☆可使用 非記憶性電子計算機。

- 1. 何謂牛頓黏度定律(Newton's Law of Viscosity)? 說明該方程式中各符號之單位與物理意義。(10%)
- 2. 何謂牛頓流體?何謂不可壓縮流體?(10%)
- 3. 解釋名詞 (包括其物理意義)。
 - 甲、 時間部分微分(Partial time derivative) (3%)
 - 乙、 時間全微分(Total time derivative). (3%)
 - 丙、 時間本質微分(Substantial time derivative). (4%)
- Hagen-Poiseuille 方程式可用來測定毛細管中牛頓流體的黏度。反之,利用已知黏度的牛頓流體可以 推求該毛細管的半徑。已知下列數據:

毛細管長,L 50.02 cm 牛頓流體的動力黏度, ν 4.03 x 10^{-5} m²/s 牛頓流體的密度, ρ 0.9552 x 10^{3} kg/m³ 水平毛細管的壓力降, $-\Delta P$ 4.829 x 10^{-5} Pa 毛細管中的質量流率, ν 2.997 x 10^{-3} kg/s

試求此毛細管的半徑。(10%)

5. 試由下列條件:

空氣溫度 = 360 °F 壁面溫度 = 500 °F

結翼之熱傳導係数 = 60 Btu hr⁻¹ ft⁻¹ °F⁻¹

空氣的熱傳係数 = 120 Btu hr-1 ft-2 oF-1

 蝴異長
 = 0.25 ft

 鯖異寬
 = 1.2 ft

結業厚 = 0.15 in.

- a) 求出一條長方形鰭翼(Fin)之熱損失 Q (Btu/hr)? (5%)
- b) 此鰭翼(Fin)之散熱效率(η)為何?(5%)
- 6. By making a mass balance over a volume element $(\triangle r)$ $(r\triangle \theta)$ $(\triangle z)$ derive the equation of continuity in cylindrical coordinates. (10%)
- Please show the detail of a typical distillation column equipped with a total condenser and a partial reboiler. (10%)
- 8. By means of a plate column, acetone is absorbed from its mixture with air into nonvolatile absorption oil. The entering gas contains 30 mol% acetone, and the entering oil is acetone-free. Of the acetone in the air 95% is to be absorbed, and the concentrated liquor at the bottom of the tower is to contain 10 mol% acetone. The equilibrium relationship is y_e=1.9x_e. Plot the operating line and determine the number of ideal stages. (10%)

明新科技大學九十四學年度研究所碩士班□在職生考試入學試題卷

所別	科目	准考證號碼 (請考生填入)	考試日期	節次	M T 1 1 T
化學工程研究所	輸送現象與單元操作		94年5月1日	第一節	第二頁/共二頁

- 9. The gas CO₂ is diffusing at steady state through a tube 0.30 m long having a diameter of 0.01 m and containing N₂ at 298 K. The total pressure is constant at 1.0 atm. The partial pressure of CO₂ is 456 mmHg at one end and 76 mmHg at the other end. The diffusivity D_{AB} is 1.67x10⁻⁵ m²/s at 298 K. Calculate the flux of CO₂ in kgmol/m².s for equimolar counterdiffusion. (10%)
- 10. For the case of incompressible flow through a circular pipe of radius R, the velocity profile is parabolic for laminar flow as follows:

 $v = v_{max} [1 - (r/R)^2]$ where v_{max} is the maximum velocity at the center and v is the velocity at the radial distance r from the center. Derive an expression for the average velocity v_{av} to use in the overall mass-balance equation.(10%)