明新科技大學 104 學年度研究所考試入學招生 試題卷 | 系所類別 | 科目 | 節次 | 准考證號碼
(考生請填入) | 考試日期 | |---------------|-----|-----|------------------|----------| | 電機工程系碩士班(電機組) | 電子學 | 第一節 | | 104/4/26 | ## ※答案須寫在答案卷內,否則不予計分。 - 1. In Fig. 1, assume that the diode with constant forward voltage drop V_D =0.8V. The circuit parameters are V_{DD} =5V and R=1k Ω . The dissipated powers of diode and resistor are P_D and P_R respectively. Calculate P_D and P_R . (10%) - 2. Assume that each of the diodes in Fig. 2, in the forward bias condition, can be modeled as a constant voltage drop V_D =0.7V. Design R to make I_D = 0.5A. (10%) - 3. According to the non-inverting op-amp circuit in Fig. 3, answer the following questions. - (a) What is the voltage gain of Av=(Vo/Vi)? (5%) - (b) When $Vi=0.3\sin(2000\pi t)$, find Vo. (5%) - 4. Fig. 4 is a simple op-amp circuit with its output saturation voltages=±15V and differential voltage gain Av=100000(V/V). The other parameters of the op-amp are assumed to be ideal. - (a) When Vi=0.1mV, find Vo. (5%) - (b) When Vi=0.1V, find Vo. (5%) ## 明新科技大學 104 學年度研究所考試入學招生 試題卷 | 系所類別 | 科目 | 節次 | 准考證號碼
(考生請填入) | 考試日期 | |---------------|-----|-----|------------------|----------| | 電機工程系碩士班(電機組) | 電子學 | 第一節 | | 104/4/26 | - 5. Fig. 5 is an inverting integrating circuit with its op-amp is ideal. Derive its voltage gain transfer function of $A_V(S)=V_O(S)/V_i(S)$. (10%) - 6 Fig. 6 is an RC single time constant circuit. If R=10k Ω and C=10uF, find the transfer function T(S)=V_O(S)/V_I(S). (10%) 7. In Fig. 7, assume that the operational amplifier is ideal. Find the voltage gain $A_v = v_o/v_I$. (10%) ## 明新科技大學 104 學年度研究所考試入學招生 試題卷 | 系所類別 | 科目 | 節次 | 准考證號碼
(考生請填入) | 考試日期 | |---------------|-----|-----|------------------|----------| | 電機工程系碩士班(電機組) | 電子學 | 第一節 | | 104/4/26 | - 8. In Fig. 8, the NMOSFET has $V_t=1V$ and $(\mu_n C_{ox})(W/L)=1$ mA/ V^2 . Find V_D and I_D . (10%) - 9. In Fig. 9, the Common Source Amplifier is connected to a signal source v_{sig} with R_{sig} =100k Ω and a load resistance R_L =15k Ω . Assume that the NMOSFET is properly biased in the saturation region and has the following parameters g_m =1mA/V. Find the overall voltage gain A_v = v_o / v_{sig} . (10%) 10. In Fig. 10, assume the NPN transistor has $\beta = 100$ and BE forward bias voltage $V_{BE} = 0.7V$. Find I_B , I_C , I_E , and V_{CE} .(10%)