明新科技大學九十五學年度研究所

☑ 碩 士 班	招生考試試題卷
□ 碩士在職專班	拍生 5

所別	科目	准考證號碼 (請考生填入)	考試日期	節次	た 4 五 / 1 0 五
化學工程研究所	化工熱力學與化工動力學		95年5月7日	第二節	第1頁/共2頁

- After 3 minutes in a batch reactor, reactant ($C_{A0}=1$ mol/liter) is 60% converted; After 8 minutes, conversion is 80%. Find a rate equation to represent this reaction.. (20%) (Hint: you can try this reaction is zero, first or second order)

The mechanism of decomposition of C_2H_6 is \div

$$C_{2}H_{6} \xrightarrow{k_{1}} 2CH_{3} \cdot$$

$$CH_{3} \cdot + C_{2}H_{6} \xrightarrow{k_{2}} CH_{4} + C_{2}H_{5} \cdot$$

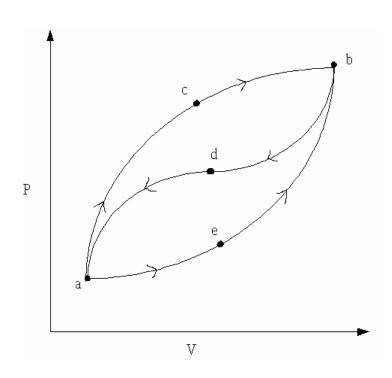
$$C_{2}H_{5} \cdot \xrightarrow{k_{3}} C_{2}H_{4} + H \cdot$$

$$H \cdot + C_{2}H_{6} \xrightarrow{k_{4}} H_{2} + C_{2}H_{5} \cdot$$

$$2 C_{2}H_{5} \cdot \xrightarrow{k_{5}} C_{4}H_{10}$$

(Hint: Using the steady-state approximation method)

≡ ` Enzyme E catalyses the fermentation of substrate A(the reactant) to product R. Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 liter/min) of reactant (2 mol/liter) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by


$$A \xrightarrow{\text{enzyme}} R - r_A = \frac{0.2C_A}{1 + 0.4C_A} \text{ mol/liter} \cdot \text{min}$$
 (20%)

- ☑ When a system is taken from state a to b as shown in the following figure along the path acb, 150 J of heat flows into the system and the system does 50 J of work. (20%)
 - (a) How much heat flows into the system along path aeb if the work done by the system is 30 J?
 - (b) The system returns from b to a along path bda. If the work done on the system is 40 J, does the system absorb or liberate heat? How much?

明新科技大學九十五學年度研究所

☑ 碩 士 班	招生考試試題卷
□ 碩士在職專班	拍生方

所別	科目	准考證號碼 (請考生填入)	考試日期	節次	炒 0万/110万
化學工程研究所	化工熱力學與化工動力學		95年5月7日	第二節	第2頁/共2頁

 $\overline{\pm}$. From functional relations of U=U(T,V) and S=S(T,V), Please show that

$$d\mathbf{U} = \mathbf{C}_{\mathbf{V}} d\mathbf{T} + [\mathbf{T}(\frac{\partial \mathbf{P}}{\partial \mathbf{T}})_{\mathbf{V}} - \mathbf{P}] d\mathbf{V} \quad \text{and} \quad d\mathbf{S} = \frac{\mathbf{C}_{\mathbf{V}}}{\mathbf{T}} d\mathbf{T} + (\frac{\partial \mathbf{P}}{\partial \mathbf{T}})_{\mathbf{V}} d\mathbf{V}$$
 (20%)